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In this paper we present an elementary discussion of the discrete wavelet
transform. A major problem is formed by the construction of an orthonor-
mal wavelet basis of the Hilbert space of square integrable functions. It is
shown that the concept of a multiresolution analysis is very helpful to make
such a construction. With every multiresolution analysis one can associate a
father wavelet the translates of which define an orthonormal system, and a
mother wavelet which forms the basis for the discrete wavelet transform. This
transform can be associated with two filtering operations and their adjoints;
in practice these are used to get a pyramid-like decomposition of a signal.
The abstract theory is illustrated by means of two concrete examples, the
sinc-wavelet and the Meyer-wavelet.

1. INTRODUCTION

For a long time the Fourier transform has been the most useful technique for the
frequency analysis of a signal. However, due to the fact that sinusoids have an
infinite support, such an approach has undesirable effects if one deals with signals
which are localized in time or space (speech, imagery). So there is definitely a
need for transforms which are not only localized in frequency but also in space.

As an instance of such a transform we discuss the discrete wavelet transform.
This is a mapping T : L*(IR) — ¢?(Z*) of the form

(TF )k = (f, on i) = /]R F(@)tm & (2)d,

where v, i is of the form

Ynk(Z) = a 29 (a" "z — kb),

and where the function 1, known as the mother wavelet, satisfies

/m?,b(:c)da: = (.

Note that as n approaches —oo, the coefficients cP(f) = (J, Yn k) €xpress the

high-frequency content of f in a small neighbourhood of ka™b, that 1S, they

represent characteristics of the signal present at a smaller and smaller scale.
T'he linear operator T" has a bounded inverse on its range if

AlFI* < ITFI? < BIIfII?,



for some constants 0 < A < B < oo. If this condition holds then the set
{Vnk | n,k € Z} is called a frame. In that case f can be reconstructed tfrom
the wavelet coefficients (f, ¥, x); see [4].

In this paper we are particularly interested in the case where the v, r consti-

tute an orthonormal basis of L?(IR). Furthermore we deal exclusively with the
case where ¢ = 2 and b6 = 1.

EXAMPLE 1.1 The Haar wavelet baszs.

The prototype example of a wavelet transform, which we consider at several

instances in this paper, is given by the so-called Haar wavelet basis. Here %
equals

1, 0<z <1
Px) =< -1, i<z<l
0, otherwise.

Note that [ ¥(x)dr = 0. The functions ¢n k, n,k € Z, given by v, (z) =
~2 (2 "z — k) define an orthonormal basis of L?(IR) called the Haar basis.

re————— )

FIGURE 1. The Haar wavelet basis: the scaling function ¢ (left; see
Section 3 for a definition) and the wavelet ¥ (right) '

Recall that the Fourier transform of f is defined as

et

fle) = /me“iwffmd:c..

We denote by L% the functions on IR which are P-periodic and which satisfy

fOP | f(z)|*dr < oo. Throughout this paper we shall always use the notion of
convergence of a series in the sense of “unconditional convergence”.

In Section 2 we present a definition of multiresolution analysis. This notion
underlies the description of the discrete wavelet transform and the construction
of a mother wavelet. In Section 3 we use Fourier analysis to show that we



can associate a scaling function (or father wavelet) ¢ to a given multiresolution
analysis. This scaling function is determined by a sequence of coefficients h..
In Section 4 we formulate conditions on h; which guarantee the existence of a
scaling function and we show, again by Fourier analysis, how this scaling function
can be computed. Then, in Section 5, we compute the mother wavelet 1) which
forms the basic entity for the discrete wavelet transform. In Section 6 we show
that the coeflicients in the discrete wavelet transform derive from two filtering
operations and their adjoints. Finally, in Section 7 we apply our results to two
concrete examples, namely the sinc-wavelet and the Meyer-wavelet.

2. MULTIRESOLUTION ANALYSIS

Now the question arises how one can construct an (orthonormal) wavelet basis.
A systematic way to do this is by means of a so-called multiresolution analysis.
We will introduce this concept, which is originally due to Mallat and Meyer,
in our tollowing definition. Recall that a system {¢; | k € Z} is called a Riesz
basis if 1t 1s obtained from an orthonormal basis by means of a bounded invertible
operator [10].

DEFINITION 2.1 A multiresolution analysis of L*(IR) is a sequence of closed
subspaces ---,V_q1, Vi, V7, V5, - -- such that

(M1) V,CV,_1,neZ.

(M2) U, _o Vnisdensein L? and (°___ V,, = {0}.

M3) f(zx) eV, < f(2z) € V,_;.

(M4) f(z)e Vy < f(x—k) eV, for all k € Z.

(M5)  There exists a function g € Vj such that the collection g(- — k),

k € /£ 1s a Riesz basis for V.

We point out that the function g in (M5) is not unique. Let P, be the orthogonal
projection of L#(IR) onto V,,. Then condition (M1) can be restated in terms of
P, as follows:

P.FPy, = P,P,=PFP,, m<n.
Furthermore, condition (M2) means that

lim P, f = f, lim P,f =0

7L = OO

for every f € L?(IR). Finally, condition (M3) can be expressed as

PTL-wl mD%-P?‘LD?.a (21)

where D, is the dilation operator given by (D, f)(x) = |al”%f(:rr/a)-

EXAMPLE 2.2 The Haar wavelet basis
lake Vi, to be the space of functions in L?(IR) which are piecewise constant on



the intervals [2"k,2"(k + 1)). It is obvious that the conditions (M1)-(M5) are
satisfied if we take for g the characteristic function of the interval [0, 1). Notice
that in this case the functions g(- — k), k € Z, constitute an orthonormal basis
of V. It is easy to check that the projection P, 1s given by

2™ (k+1)
Pp@ =2 [ @y, @€ 2R 2 (k+ 1),

2n k
In this example the elements of the subspaces V;, are only piecewise continuous.
and as a consequence the projection P, f converges to f very slowly as n — oo.
To obtain faster approximations one has to assume some additional regularity
for the functions in V,,, or in other words, for the function g. We give a formal
definition.

DEFINITION 2.3 A function f € L*(IR) is said to be regular if it is continuously
differentiable and satishies

C C

f(z)] < 1+ 22 ° | f(z)] < 12

for some constant C' > 0 and every x € IR. A multiresolution analysis is said to
be regular if the function g in (M5) is regular.

EXAMPLE 2.4 Higher order splines

The space Vj in the example of the Haar basis consists of 1’st order splines. In
this example we consider splinesof orderr > 1. Let Vo = {f € L*(IR) | f € C"!
and f is a polynomial of degree < r on every integer interval |k, k + 1]}. If, for
instance, » = 1 then V{ consists of piecewise affine functions. Defining the V,
by dilation of Vj, one easily derives that (M1)-(M4) are satisfied. Let x be
the characteristic function of the interval [0, 1] and define the r-fold convolution
X*" = y*x*---xY. One can show that ¢ = x*("*1) satisfies (M5). The functions
x(- — k) form an orthonormal basis for V; in the case »r = 0. This, however, is
no longer true if »r > 1. Note that if = 1, the function g = x*? is given by

X, 0< <1
glr)=4q 2-z, 1<z<2
0, outside [0, 2].

Using that x(z) = x(2z) + x(2z2 — 1) we find by a straightforward computation
that g = x*? satisfies

() = 59(22) + 9(2z ~ 1) + 2 (22 — 2)

‘see Figure 2 below.
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FIGURE 2. The scaling function g = x** for second order splines.

Similar expressions can be derived for y*" if r > 1.

3. ORTHONORMAL BASIS OF MULTIRESOLUTION ANALYSIS

In the last example we have seen that for splines of order > r the basis elements
x*("*t1(. — k) are not orthonormal. In this section we will show, using standard
Fourier techniques, that for every multiresolution analysis {V,,} one can always
find a function ¢ € V, such that the functions ¢(- — k&), k € Z form an orthonor-
mal basis. In that case ¢ will be called the scaling function or also the father

wavelet of the multiresolution analysis {V,,}.
Assume that Vy € L%(IR) is such that (M4)-(M5) hold. If f € V, then it can
be decomposed as

fx)= ) arg(z — k), (3.1)

k=~ 00

where a = (ar) € ¢*(Z). Now we take the Fourier transform at both sides,
change summation and integration (which is allowed since the Fourier transform
1S a continuous operator) and arrive at

Let Af € L2_ be given by Ar(€) = > i _. axe”**s. The next lemma shows
that we can decompose the infinite sum representing f(f ).

LEMMA 3.1 Let a = (ax) € ¢*(Z) and g € L?(IR). Then

OO 0

> are*EG(e) = ( D are” ) g(8),

kmmm km*—OD

where convergence is taken in the L?-norm and the first factor at the right-hand-
side is interpreted as an element of LZ_.



PROOF. In the proot we use the following result twice. It f,, is a sequence in
L?(Q), where Q is a measure space , and f, — f as n — oo in the L?-norm,
then there is a subsequence {n,}, such that

fn,(y) = f(y), p— o0, forae ye

see [8, Thm 3.12]. We apply this to the sequence {)_, are”*€G(£)} v and
find that there is a subsequence {/N,} such that

lim Z ake“z}cfﬁ (&) = Z akewm‘s'ﬁ(f)

p— 00
|k| <N, k=—00

for a.e. £ € R. Now consider the term (3, are™**¢)g(€) at the left hand-
side. We know that 3, .y are™" converges to ;" are™** in the L3 -
norm. Hence there is a subsequence {p,}; such that

lim E (;Lk;ew“Icf = E ake"“‘f
j—00

|k|<N k=-—o00
for a.e. £ € IR. This proves the result. O
From this lemma we may conclude that f € V, if and only if
f(&) = As(§)g(£), (3.2)

for some Af € L5 . The norm of f is given by

1717 = 2 fm FO)PdE
- .Q.l;r.zkww ean A ()1[G(E)I2dE
= o Jo | 1A£(6)1 (e _ o0 19(€ + 2km)|2) e,

where we have used that Ay is 27-periodic. Putting

L) =( S (g +2km)|?)? (3.3)
k=—0o0
we get that
7P = 5= | 14s(©)Pr(©)?ae (3.9

LEMMA 3.2 Let Vp C L*(IR) and g € Vp be such that (M4)-(M5) hold. Then
there exist C';,Cs > 0 such that

C; <T(6)<Cy, €E€R. (3.5)

The proof can be found in {7, Thm II.1, p. 27].
We define U : Vy — L?[0, 27] as the bounded linear operator which maps the

function g(- — k) to (271')“%6“":’“T, or more generally

10



(UF)(€) = —==A(ET (). (3.6)

It 1s obvious that U is injective. To show that U is surjective take an arbi-

trary h € L?[0,2n]. Then, thanks to Lemma 3.2, h/T" € L*#[0,27] and so there
exists a sequence (ay) € 62(2) such that

Z are*F¢.

k=—00

Then

Z akg(: — k) \/—— Z aw”ikfl“(.f) = h(£).

k=—o00 k=—oc

Thus U defines an isomorphism. From (3.4) we conclude that U is also an

1sometry, i.e., ||Uf|| = ||f|| for every f € V;. Thus we arrive at the following
result.

LEMMA 3.3 U 1s an isometric isomorphism. Assume that f € V. Then there
is a sequence (ay) € ¢4(Z) such that f =352 arg(- — k). Then

UNHE) = —= S axe*€r(e)

Furthermore, f(f) = D oo @k€T*EG(£). Combination of both expressions
ylelds that

oo L f) Qo
(Uf)(§) = N0 I'(€). (3.7)

Note that
Uf(-—k)=e **UT, (3.8)

for every f € V. Assume that ¢(- — k), k € ZZ, is an orthonormal basis of

Vo. Then, since U is an isometric isomorphism, U¢(- — k) is an orthonormal
basis of L?[0,2n]. Let e, € L2[0,2r] be given by

ex =Up(- — k) =e **Us.
Then

2T
(ex, er) = /0 e~ i k=D |17 (€) 2de,

and (ex,e;) = 6py if [U@(€)| = 1/+/27 a.e. Using (3.6) we obtain that a solution
is given by ¢(§) = g(£)/L(€).

THEOREM 3.3 Let Vy C L*(IR) and let g € V; be such that (M4)—(MS5) hold.
(a) If ¢ € L*(IR) is defined by

11



b(¢) = g%% (3.9)

where I'(¢) is given by (3.3), then the functions ¢(- — k) form an orthonor-
mal basis of V}.

(b) If o € L*®(IR) is a 2n-periodic function with |o(£)] = 1 a.e., and if @ is
defined by 0(£) = o(£)(€), then 6 € Vy and 8(- — k), k € Z is an orthonormal

basis of V.
Conversely, if 8 € V; is such that ||#|| = 1 and the functions 6(- — k) are

orthogonal, then 8(- — k), k € Z, is an orthonormal basis of V, and () =
o(€)(€) where o € L=(IR) is a 2m-periodic function with |o(£)]| = 1 a.e.

(c) Let ¢ € Vi be such that the system o(- — k), k € Z, is orthonormal. Then

0

S o€ +2km)P=1 ae (3.10)

k=—00

PROOF. (a) and the first assertion in (b) follow from the arguments given above.
To prove the second assertion in (b) assume that ||#|| = 1 and 8(- — k) is orthogo-

nal. Define o = v27U#0, then UO(- — k) = (27r)""‘lé'e““k‘a. Since U is an isometry
we get that ||o|| = v/27. Furthermore {e™**'¢ | k € Z} is an orthogonal system
and hence

27
| omieettas =0 itk #o,
0 |

yielding that |0(£)|? is a constant a.e. In combination with ||o|| = v/27 this yields

1

that |o(£)| = 1 a.e. We may conclude that the family {(27) " 2e™**¢c | k € Z}
is an orthonormal basis of L?[0,27] and hence that {6(- — k) | k € Z} is an
orthonormal basis of Vj. Finally

0:\/27rU9:£mi,
g o

whence the conclusion follows.
(¢) If ¢(- — k) are orthonormal, then

bmo = [ $(2)8(z — m)dz = 5 [p €7 E[H(€)[Pd
o Jo € (X he oo [6(€ + 2km)[?) dE.

From this, the assertion follows. ]

4. CONSTRUCTION OF A SCALING FUNCTION
A crucial question is how one can find a function ¢ such that the translates

¢(- — k) are othonormal and such that the dilation Dy¢ lies in the linear space
spanned by these translates. We start with a lemma.

LEMMA 4.1 Let g be a regular function and let the kernel K be given by
K(z,y) = ZZ‘;_.QO glx — k)g(y — k). Let Ty : L*(IR) — L?(IR) be the inte-
gral operator

12



(Taf)(@) = A [ Kz, 20)f(w)dy.

The tollowing assertions are equivalent:

(1) limy—oc [|TAf — fll2 = 0, for f € L?(IR).
(ii) | K(x,y)dy =1 for a.e x € R.

T'he proof can be found in [5, Lemma 1, p. 74]; see also [7, Lemma II.13, p. 42].
Assume that V,,, n € Z, defines a regular multiresolution analysis of L?(IR)
generated by the scaling function ¢, and that {¢(-—k) | k & Z} is an orthonormal

family. The function ¢(1-) lies in V| and hence in Vo, 8O we can write

6(5)=V2 > higlz — k), (4.1)
k= —— o0
where
he = = i 6(5)é(x — k)dz (4.2)

Since ¢ is regular we find that

1

laking the Fourier transform of (4.1) at both sides we get that
6(26) = H(£)$(€), (4.4)
where
1 OO
H (£ — he ke (4.5)
€)= 7 kg;m

In the previous section (c¢f. Thm. 3.4 (¢)) we have seen that

o0

> (€ +2km) P = 1.

k=-—00

In combination with (4.4) this yields that
1= ) [8(2+2km)[>= 3 [H(E+ kn)2|p(€ + kn)[2.

k= — 00 k=—ox

Since H is 2m-periodic we find that

o0 OO

L=HE) ) |¢(€+2km) + [HE+m)> S 16(6+ 7+ 2kr) [,

13



and hence that
H(€)]* + |H( +)]* = 1. (4.6)

Restated in terms of hx this condition reads

Z h'n---2k_izn--2£ — (Skl- (47)

N =—00

LEMMA 4.2 Under the given assumptions

HO)=—= 3 he=1 (4.8)
k

This result will follow from (4.4) if we can show that 55(0) # 0. Actually we

show below that |££’(0)\ = 1. We consider the projection operator P,, on V,,. Let
Fy be the projection operator on V. One easily sees that the following inter-
twining diagram is valid; see (2.1). Here D, is the dilation operator given by
- _1
(Daf)(z) = la|™2 f(x/a).
XR) =V,
D% lT Do D% lT Dy

L2(R) =3V,

In particular we have

.Pn e Dg'n PODQ--n. (49)

Now Pof =3 7 __(f,o6(-—k))o(- — k), which yields that

Pof@) = | K(@w)fwds, (4.10)
where
K(z,y)= Y olz—k)d(y— k). (4.11)
k=— 00

Since ¢ is regular we can show that

C
K T, S e
tor some constant C' > 0. From (4.9) we conclude that P, is the integral opera-
tor With kernel 27" K (27"z,27"y). Since ¢ generates a multiresolution analysis
of L*(IR) we conclude from (M2) that P,f — f as n — —oo with respect to the

strong operator topology. Applying Lemma 4.1 we get that [, K(z,y)dy = 1
for a.e. x, that is,

(4.12)

14



> e k) [ Blu—Rdy=30) 3 oz -k) =1

k—=— o0 k=— o0

Integrating this expression over [0, 1] we find that
6(0)]° = 1. (4.13)
Now, by substituting & = 0 in (4.4) the result stated in Lemma 4.2 follows.

REMARK 4.2 From H(7m) = 0 it follows that Y ,_ ___(=1)¥h; = 0, that is

If |hk| decreases fast enough, in particular, if hy = 0 for |k| large enough, one
can show that

H(§) = (14 e *)F(€),

where F'(§) = > v _ . fre " and (fy) € ¢2.

In the remainder of this section we show that conditions (4.7)-(4.8) along with
some other (technical) conditions, mainly concerning regularity, yield a multires-
olution analysis.

THEOREM 4.3 Let (hy) € ¢%(Z) be a sequence which satisfies

1
= 0(——= k — 4.14
Z hk- — \/-2_ and z hn-—-—-?,ktngn——-Ql — 5k‘l- (415)
k::-—-—m TL=2 = (2O
Define H(&) = *15 > e hre™ & and assume that
T

Then the infinite product [[._;, H(27%¢) defines an L2-function. Let ¢ € L?(IR)
be the function with Fourier transform

8(6) =[] H(2 ). (4.17)
k=1

Then {¢(- — k) | k € Z} defines an orthonormal system. Let V; be the subspace
of L*(IR) spanned by this system and let Vo = DanVyy for n € Z. If ¢ is regular
then the V), define a regular multiresolution of L2(IR).

The proof of this theorem consists of several steps. We start with a lemma due
to Daubechies [1, Lemma 3.1; p. 948].

15
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ut loss of generality that ¢ < 1 in (4.18). There is a
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> 4, LW J b3 itR B h il a I

{, which yields tha

i .
.....

hie| - [3REIT < CTIEL°

o H(27%¢€) follows imme-

From this the converge

diately.

™

"

r‘

1

hereto we

defines an L?-function.

he continuous function

if1€] > 25
M(27%¢) if|E] < 2%




PrRoOOF. Using that M (§) + M (£ +7) = 1 it follows immediately that

27 |
/ M, (€)e"™  dE = M ( 15) 1NE 1€ = 27,,,0.
IR —27 2
Furthermore,
S M2(€)e™Ede = [TT M(Le)M(Le)eimeqg
= ;;L-W M(%f)]\/f(iﬁ) ””Edf T /olﬂ M {;5)]\1( E)et™me e
= Jo M(3€+2m)M(3€ + m)e'™dg
+4f5‘“ M(36)M(36)e<de
= [04:: (25) []\/[( £+ m) + J\/[(%E)}e““gdf
= JyT M(3e)emed
=[5, M(3E)eme e

where we have used that M (1-) is 47-periodic in the last equality. This shows
that

/ MQ (f)eifnﬂbgdg I/ Ml(g)ﬁ?i'm&df — 27’1"67”(_),
IR IR

T'he same relations can be established for k > 2, and we conclude that

f M. (€)e*™ dE -—--/ My (€)e'™5dE = 276,,,.
IR R

This concludes the proof. O]

We are now ready to finish the proof of Theorem 4 .4.

PROOF OF THEOREM 4.4
Since M (£) < 1, the sequence M (&) converges as k — 00,

Moo (&) = lim M(&) = H M(27%¢) = |Ho (6)]2. (4.20)

Kk — 00

Fatou’s lemma [8] gives

/ M () < lim / M. (€)d€é = 2, (4.21)

k — 00

from which we conclude that H., is an element of L*(IR). Let ¢ € L3(R)
be the function which has H.. as its Fourier transform, that is,

B(€) = H H(27%¢). (4.22)

We show that the system {¢(- — k) | kK € Z} is orthonormal. From Parseval’s
formula we find that

/ 6(2)B(z — k)dz —
IR

1

1 k& 2 ¢ — oikE 1 p ds
B = 5 | e (6)de

27

17



Suppose we can show that there exists an L!-function F' such that

0 < Mi(§) < F(E), for€elR. (4.23)

Then, by Lebesgue’s dominated convergence theorem and Lemma 4.6 we de-
rive that

278,.0 = lim / M (€)e'™edE = / Moo (€)e* ™ dE,
IR IR

k—00

whence the assertion follows. So it remains to establish (4.23) for some F ¢
L'(IR). From the regularity condition (4.14) and the fact that H(0) = 1 we

conclude that H(§) = 1+ O(§) as £ — 0, and hence that M (&) =1 + O(¢) for
¢ — 0. Since

My (€) = exp{> log M(27%¢)},
k=1

we find that
Mx(§) =1+ 0(), €—0. (4.24)

In combination with My, (2§) = M (§)Mo(§) = |H(&)|* My (€) and the assump-
tion (4.16) this implies that

My(€) >c, £€|—m ], (4.25)

for some ¢ > 0. For |£| < 2Fm we have Mo (§) = My (§)Mo(£/2F) and with
(4.25) this yields that

0 < Mi(€) < ~Me(6).

for |£] < 2m. However, M (&) = 0 for |£] > 27 and therefore this inequality
holds for every £ € IR. Thus (4.20) holds with F' = ¢~ 'M,,. This shows that
the ¢(- — k) define an orthonormal system.

We now assume in addition that ¢ is regular. Let V; be the vector space

spanned by the ¢(- — k) and let V,, be the spaces deriving from V{ by dilation.
We must show that the V,, define a multiresolution analysis of L?(IR). To prove

(M1) it suffices to show that V1 C V4. If f € V4 (resp. V1) then F(&) = Ap(£)d(E)

(resp. f(&) = Af(2§)<$(2§)) for some 27-periodic function A € L?[0,27]. From
the expression (4.22) for ¢ we deduce that

o o~

¢(28) = H(£)d(8),

where H is 27-periodic and |H(£)| < 1. From these observations it follows that

Vi C Vu. Now let P, be the orthogonal projection on V,,. To prove (M2) we
must show that

P ,.f—f and P,f—0 asn— oo,

18



with respect to the strong operator topology. Let K (x, y) be asin (4.11), then P,
1s the integral operator with kernel 2 " K (2" 27 "y). It follows with Lemma

G ‘2 — Tl

2*"’71,:[( 2—-7’"2;,.#"?2“-‘7“2,, < | —
2 ORETE RS Ay

and from this inequality we easily derive that P, f — 0 as n — oo. This
concludes the proof of Theorem 4.4

EXAMPLE 4.7 The Haar wavelet basis |
Let ho = hy = 3v2, then H() = (1 +e7%) /2, and

Y ¢ 1 — e i
> ) H(2 )= —— .

and this expression converges towards
~ 1 —e % L
(&) = — m/ e " dr.
23 0

In other words, ¢ is the characteristic function of the interval 0,1]. Note that
indeed

05(5) = ¢(x) + ¢(x — 1);

see also Fig. 1. In this case we have H(£) = e 3% cos 1€ and H(£ + T) =
1

te” 2% sin %, yielding that [H(&)|* + [H(£ + 7)|2 = 1 (cf. (4.6)).

In the second part of Thm. 4.4 the regularity of ¢ has to be assumed explicitly
as 1t did not follow automatically from the assumptions on hi. The tollowing
result, due to Daubechies [1, p. 949] gives sufficient conditions for the regularity
of ¢ in terms of the coefficients hy.

PROPOSITION 4.8 Let H(§) = [4(1 + €¥)]" F(£) with F(£) = 3% freike
such that the following conditions are satisfied:

Z fel - |k|® < oo  for some € > 0, (4.26)
k= — 00
[F(§)] <2%, €eR, (4.27)

for some K € IR. There is a constant C > 0 such that

[ HCE oI <Cca+g)—N+E. (4.28)

k=1

5. ORTHONORMAL WAVELET BASIS

Assume that the spaces V,,, n € Z form a multiresolution analysis of L?(IR)
with ¢ the scaling function. Let W, be the orthogonal complement of V,, in
Vn—1, in other words,
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Vb Wy = Vi1, (51)
We prove the following theorem.

THEOREM 5.1 There exists a function ¥ € Wy, called the mother wavelet, such
that {yY(- — k) | k € Z} forms an orthonormal basis of Wy. If ¢ is reqular then
Y 18 reqular as well.

We use the following convention. If V is a subspace of L*(IR) then we denote by
V' the subspace of L*(IR) consisting of all Fourier transforms of functions in V.

From the fact that V; & W, = Vo we conclude that ‘71 D Wl = \70, that 1is, Wl
is the orthogonal complement of V; in V. We have seen that

‘20 = {A¢ | A€ L3, }
Vi = {A(2)9(2)) | A € L3, }.
Using that ¢(2¢) = H(€)o(€) (cf. (4.4)) we get that
Vi = {A(2)H¢ | Ae L3 }.
Let S : Vo — L2[0,2n] be the unitary operator given by
S(Ag) = A.

Instead of computing Wl directly, we first compute S (Wl), which is the orthog-
onal complement of S(V7) in L4[0,27x]. It is obvious that

S(V1) = {A(2)H | A € L?[0, 27}

Let F € L?[0,2n] be in the orthogonal complement of S (171), then we have

/ " AQ6)H(E)F(€)de = 0,

0

for every 2m-periodic function 4. This means that

| 4@O[H©F© + He +mF (e +m)]de =0,
for every 27w-periodic function A. But this implies that

H(EYF(€) + H(E +m)F(E+m) =0, (5.2
So for every £ € IR, the vector (F(§), F(€ + m)) is orthogonal with respect

to the unit vector (H(£), H(£ + 7)) in the vector space €°. Then there is a
function o such that

F&) = a(@)e " CrH (£ + ) (5.3)
F(§+7) = —a(f)e T H(¢). _ (5.4)

It follows immediately that « is m-periodic. Using (4.6) we find that
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a(€) = ST F(E)H(E+7) — F(6+m)H(E)]. (5.5)
From (5.3) we obtain that

o IF©PdE = [)7 [(€)2|H (€ + ) [2dg
= Jo (@) [[H () + |H(& + m)|2]de
— Jo o (§)]dE,

from which we conclude that the linear operator F' — o« given by (5.5) defines
an isometry from L?[0, 2] into L?[0,7]. This yields that

" 2e T EFIH(E 4+ 1)k ke Z, (5.6)
forms an orthonormal basis in S (Wl) Applying S~! we find that

1

o den E M (4 M@, keZ, (5.7

defines an orthonormal basis of Wl. Let ¥ € W, be the function with Fourier
transform

U(€) = V2eEHIH(E + 1) g(8),

then the family {W(- — 2k) | k € Z} is an orthonormal basis of W,. Let ¥ € W,
be given by ¢ = D1 W. Then (2£) = 2-3W(¢), that is,

o

P(26) = e "EFIH (€ 4 71)B(8), (5.8)

thus {¢(- — k) | k € Z} is an orthonormal basis of W,. Using that e%(2¢)
is the Fourier transform of 14 ((x + 1)/2) and that

OO

272 D (—1)FRie*ep(g),

k=-—00

|

H(&+ m)o(€)

we get, by taking the inverse Fourier transform of (5.8), that

T+ 1 > —
SEF) =VE 3 (DN ol + k)
or 1n other words
() =v2 Y (—1)*h 1102z — k). (5.9)
k= — o0

We observe that the assertion in Thm 5.1 about the regularity of ¢ follows
iImmediately from the series expansion (5.9).

In the case of the Haar wavelet (see Ex. 4.57) we have hg = h; = %\/2 This
ylelds that ¥(x) = ¢(2z) — ¢(22 — 1); see also Ex. 1.1.

T'he system {y, x | k € Z} with 1, . given by
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Vn.k(T) = 2*%’%@5(2”?@ — k), (5.10)

defines an orthonormal basis of W,,. Moreover, we can prove the following im-
portant theorem.

T'HEOREM 5.2. The system {Yn x | k,n € Z} is an orthonormal basis of L*(IR).

T'his system is called the orthonormal wavelet basis and 1 is called the mother
wavelet. To prove this theorem we make the following observations. From the

tact that W,, L V,, and W,, ® V,, = V,,_1 it follows immediately that the W,, are
mutually orthogonal. Let @),, be the orthogonal projection on W,,. From

Pn — I'n+1 - Qn—l—l (511)

we derive that, for m > n,

P.f =Pnf+ Y Qif

j=n+1

Using that P, f — 0 as m — oo we get that

Pnf: Z ij

J=n-+1

Furthermore, since P, f — f as n — —oo, we find that

P W, =L*(R). (5.13)

6. WAVELET EXPANSION AND FILTERING
We can reformulate (5.8) as

e % VN,

$(26) = G(£)e(¢), (6.1)

where

G(&) = e "CTH (¢ + 7). (6.2)
- Let the coefficients g be defined by

G(&) = % D gre e, (6.3)

= (OO

or in other words
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W(3)=V2 > gd(e - k) (6.5)

k=—o0

Consider a multiresolution analysis {V,,} with scaling function and mother wa-
velet respectively given by ¢ and . Let as before

Ok (T) = 2-—-2’%¢(2-—n$ — k), (6.6)

Un k() =27 2927 "z — k). (6.7)

The projections P, on V,, and @Q,, on W,, are respectively given by

Pn,f — Z C}?(f)gbn K 5 (6 8)
kK=—ox
Qnf = Z z(f)d)n,ka (6.9)
k=—oc
where
ck(f) = (fsnk) and  dp(f) = (f, Yni) (6.10)

Suppose that P, f is known through its coefficients c... We demonstrate how
one can express the coefhicients c”,;f“ of P,+1f and d;f“ of )41 f in terms of
the ¢}. From

(cf. (4.1) it follows easily that

qb'n,k — Z hl-—-—-2ks¢n--l,l- (611)

[=—0o0

Let H : ¢ — ¢? (where ¢? = ¢?(Z)) be the filter given by

(Ha,)k. — Z nggkag. (6.12)

We use the notational convention that
(Cn)k == Ck .

Then we obtain from (6.10) and (6.11) that
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¢ = He L (6.13)

With (5.7) and (6.4) we derive that

jwn,k: — Z gl—-—-?kqb'n-ﬂl,l- (614)

| = — o0

Defining the filter G by

(Ga')k — gi-2okaL, (6*15)
[=— 00
we derive that
d" = Gt (6.16)

From (6.11) and (6.14) we deduce that for every n € Z,

(Dn.ls Pn-1k) = hk—a1, (6.17)

(Ynly Orn-1,k) = Gr—2. (6.18)

If F is a filter on ¢%, then the adjoint filter is the mapping F* : #2 — ¢? which
satisfies (Fa, b) = (a, F*b). The adjoint filters H*, G* : £* — ¢? are respectively
given by

(H*a)k == Z hk_glag, (6.19)
[=—00
(G*a)k — Z gk —214] (6.20)

Now we can express ¢"~' in terms of ¢ and d". We use (6.17)- (6.18) to
derive

— <P7?»Dj(; T an7 qbnml,k) o
— <Zoém__oo C?én,la ¢n-—1,k> -+ <Zlm-oo d?wn,la ¢n-~—1,k>
= 2 e —oo Pk—21€]" + 22 _ o Gk—2d]

In other words
"~ =H*c" + G*d". (6.21)

REMARK 6.1 The transition ¢"~! — ¢", d" corresponds to a change of basis in

{1k |kKEZ}Y — {Pnr | k€EZ}U{Yi | ke Z}.
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of (6.13), (6.16) and (6.21) yields that

. aa B %?% e ﬁ s ?@ s g.

A

which we conclude that

from

(6.23)

In terms of the Fourier transform this relation corresponds to the identity (4.6),
le..

HEP +|H(E+m)]* =1

Note that both H"H
Let a € ¢4, then

y AN

(6.24)

S i I ii Aariv w - ]

(6.25)

.:;':;:z,_,._

HG" = GH™ = 0.

An Mterr‘mtaw pm()f Of the 1deut1tms (6 24) 6 26) carn lw gwen hy exploiting
e . Let ¢, d € ¢°

be ar a 1t rary ¢ deﬁn e f E 1 b y
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f= " cdrr+ Y detik

k=—00 k=-—00

The first term at the right hand-side lies in V; whereas the second term lies in
Wi. Alternatively, we can write

0

f= > &bok

k—— 00

where ¢ = H'c 4+ G*d. Now
c=H¢=HH"c+ HG"d and d=Gc=GH'c+ GG"d.
Since these identities hold for arbitrary c,d € ¢°, relations (6.24)-(6.26) follow.

7. THE SINC-WAVELET AND THE MEYER WAVELET

In the present section we discuss two examples of a wavelet basis for which the
Fourier transform of both the scaling function ¢ and the wavelet function ¥ has
a compact support.

The sinc-wavelet

The first example is the so-called sinc-wavelet. Recall that sinc is a well-known
function in signal analysis given by sinc(xz) = sinx/x; see Fig. 3. It is easy to
check that the Fourier transform of sinc(7x) is the characteristic function of the
interval |—m, 7]

x=0.5

FIGURE 3. The scaling function ¢(z) = sinc(wx) (left) and the corresponding
wavelet function 7 (right)

Let Vg be the subspace of L?(IR) given by

Vo = {f € L*(R) | supp(f) C [, 7]},
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where supp(f) is the support of the function f. To see that (M4) is satisfied,
take f € V. Since the Fourier transform of f (- — &) is given by e™** f it is clear
that f(- — k) € V. Let V,, be the space derivin g from V, by dilation. Then

Vo = {f € L*(R) | supp(f) C [-27"7,2 " x]}.

Therefore (M1) is trivially satisfied. The projection £, is given by

1 2—?'.1,71,_ . .
Pfr'z,f(m) — 5_'/ f(g)p Lgdfa

and from this expression one easily derives that P, f — fasn — —oo. Therefore
(M2) holds as well.

We show that ¢(x) = sinc(nx) is a scaling function, that means, the collection
&(- — k), k € Z constitutes an orthonormal basis of Vo. To prove this observe
that the Fourier transform of x — sinc(72) is the characteristic function of the
interval |—7, w|. This yields that

sinc(mx)since(m(x — k))dxr = — e Mo dE = by,
IR - 2T — T

from which the assertion follows. Considering x as a complex variable V;, becomes
the Paley-Wiener space consisting of entire functions of exponential type at most
m (10, p. 105ff]. For f € V,, we have

IFIP= D |f(k)
k=—o0
and
fx)= > f(k)sinc(m(x — k))
k= —ox

T'he latter series is called the cardinal series and plays an important role in signal
analysis where it is known as the sampling theorem.
T'he coefficients hy are determined by the relation

6(3)=V2 > haslx — k),
k=—oc

and we find that

1 _ (-—-—1)"‘
ho = —, hor =0if k # hopt1 = V2- .
0 \/5’ 2k 01 k 0, 2+ 1 \/_'ﬂ‘(2k* —+ 1)

The 27-periodic function H(£) = 273 > re oo he™**¢ can easily be found from
the relation

$(26) = H(£)o (),

o~

and the fact that ¢ is the characteristic function of the interval [—, .

27



L R X 1 B B 3 R 3
asbhamnnse
-
= i i o i dr i - =
- wmibe s aw
hessveesese s

i’ O |2 -2 - O TC 27T

FIGURE 4. The functions ¢ and .

.

The Fourier transtorm 1 of the corresponding wavelet function v is given by

26 = 6(3)a(%),

where (G is related to H through (6.2). Thus we find that (&) = e %&/2+7) if
m < |&] < 27 and 0 elsewhere; see Fig. 4. Since H = 0 in a neighbourhood of

r we find that G("(0) = 0 for every integer r» > 0. This yields that J;("")(O) = ()
for » > 0, and therefore

f ' P(x)der =0 for every r > 0.
R

In this example ¢ can be computed explicitly as the inverse Fourier transform
of . A straightforward computation shows that

COS T — SIN 27T

() =

w3 - 2)
Note that ¢ 1s symmetric around x = -}2-., that is ¥ (x) = ¥ (1 — x); see Fig. 3.

The Meyer wavelet

The second example which we discuss in this section is closely related to the
previous one. This example was first reported by Yves Meyer and for that reason
it 1s often called the Meyer wavelet; however, Meyer called it the Littlewood-
Paley wavelet. In fact, the main difference between this example and the sinc-
wavelet discussed above is that the Fourier transform of the Meyer wavelet has
arbitrary high regularity. We denote by D(IR) the space of all functions which
have compact support and are infinitely many times differentiable. By S(IR) we
denote the class of functions f which are infinitely many times differentiable and
satisiy the estimates

FP) (z)] = Of

2|, 2| — oo,

for all nonnegative integers p,n. It is obvious that D(IR) C S(IR). Furthermore
1t can be shown that

o N

feS(R) < feS(R).
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T'he wavelet ¢ which we construct below will have the following properties:

® ) has finite support

e ¥, € S(IR)

o Y(zr)=yY(l—-z), forxelR

o [ zPyY(x)dx = 0 for every integer p > 0.

A comprehensive discussion on the Meyer wavelet can also be found in 7] and
[3]. We start by choosing a function P with the following properties:

(i) P € D(IR)

(ii) P is even, i.e., P(§) = P(—¢)

i) 0 < P <1

(iv) P has finite support, to be precise supp(P) = (—4r/3, 47 /3)
(v) P(&) =1 for £ € [~ 27{'/3 27 /3]

(vi) P(£)* + P(2r —€)? =1 for 0 < £ < 2.

Thus P is a function with a shape as depicted in Fig. 5 below. At the end of

this section we shall make a short remark concerning the construction of such a
function P.

473

i

FIGURE 5. The function ¢ = P used in the construction of the Meyer wavelet.

It 1s easy to verify that for every k € Z.

f ewika(g)Q = 27 - 6}h0 | (71)
IR

There exists a function ¢ € S(IR) with Fourier transform

Then

fm ¢(-T)$(37 — k)dz 271- fn:{ (5),2(15

zgr f]R LkE P(E)‘ng = Oo.

Thus {¢(-— k) | k € Z} is an orthonormal system. Let V} be the space spanned
by this system and let V,, be the spaces obtained by dilation. Then V = {Aqb |
A€ L2 ) and V_, = {Ap(L) | A € Li.}. We show that Vy; ¢ V_q, that is,
Vo € V_1. Let H be the 2m-periodic function (see Fig. 6 below)

Ii
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FIGURE 6. The periodic function H.

Then

.,

#(26) = H(€)o(). (7.3)

To understand this one should observe that 55(5 ) = 1 for every £ in the sup-

N o~

port of ¢(2-). With (7.3) it follows easily that Vi C V_;. Using property (v) of
P 1t 1s easy to prove that

H(E)|? + |H(E+7)> = 1. (7.4)

We have thus shown that the conditions of Thm 4.4 are fullfilled. Note that

(4.14) follows from the fact that H is infinitely often differentiable. Let G(&) =
e " &+ H (£ + ), then

36 = G333 = e EHE + 1),

A straightforward computation shows that
supp(¥) = (—8m/3, —2r/3) U (27/3,87/3);

see Figure 7.

FIGURE 7. The Fourier transform 7;

Therefore ¥ € S (IR) and thus ¥ € S(IR). We call 1 the Meyer wavelet. From
(7.3), (7.4) and the fact that H(£) > 0 everywhere one easily derives that

B(E) = e 3 [3E)2 - Ge)7) . (75)
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Note that, just as in the example of the sinc-wavelet, the wavelet transform has
the effect of a band-pass filter. It is clear that e*/2y(£) is even, and with this
observation it is not difficult to show that

Y(x) = (1 —x).
Finally, since G?)(0) = 0 for every integer p > 0, we get that ?,Z(’P)(O) = 0 for

every p 2 0. Therefore we have

/ Pp(z)de =0, p >0,
IR,

We conclude this example with a remark about the construction of a function P
satistying the properties mentioned at the beginning of this section, in particular
the property that P(£)* + P27 — €)2 = 1 for every &. Choose a (C°“-function
o on (0, 27] with a = 0 on [0, 27/3], increasing on (27/3,47/3) and o = 7 /2
on [47/3,2m]. Furthermore let & be symmetric with respect to the point & = 7.
that is

a(2r —€) = 5 — a(8);

see Figure 8.

o]
N/2 Poecsontacssncccanccncanacancnncncnsersnanannsnensnnes T —————— - >+ ==
point of .
symmetry
T/ 4 Jovoccncnncncncncascnccnnsncsncsnvosnannne :
0 21/3 o 41t/3 21

FIGURE 8. The C°°-function «.

Define P(§) = cosa(§) for £ € [0,27]. Then P27 — £) = cosa(27 — £) =
cos(m/2 — a(§)) = sina(), from which it follows immediately that P(£)% +
P(2m — €)% = 1.
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